하자 파라미터를 이항 분포 함수 (DF)를 나타내고 , N ∈ N 및 P ∈ ( 0 , 1 ) 에서 평가 R ∈ { 0 , 1 , ... , N } :
B ( N , P , r ) = r ∑ i = 0 ( nB(n,p,r)n∈Np∈(0,1)r∈{0,1,…,n}
및하자F(ν,R)매개 변수 포아송 DF를 나타낸다∈R+에서 평가R∈{0,1,2,...}:
F(,R)=e−ar ∑ i=0ai
B(n,p,r)=∑i=0r(ni)pi(1−p)n−i,
F(ν,r)a∈R+r∈{0,1,2,…}F(a,r)=e−a∑i=0raii!.
고려 및하자 N 으로 정의 될 ⌈ / P - D ⌉ , d는 정도의 일정 1 . 이후 N 개의 P → , 함수 B는 ( N , P는 , R ) 으로 수렴 F ( , (R) ) 모두 , R은 ,도 알려져있다.p→0n⌈a/p−d⌉d1np→aB(n,p,r)F(a,r)r
With the above definition for n, I'm interested in determining the values of a for which
B(n,p,r)>F(a,r)∀p∈(0,1),
and similarly those for which
B(n,p,r)<F(a,r)∀p∈(0,1).
I have been able to prove that the first inequality holds for
a sufficiently smaller than
r; more specifically, for
a lower than a certain bound
g(r), with
g(r)<r. Similarly, the second inequality holds for
a sufficiently larger than
r, i.e. for
a greater than a certain bound
h(r), with
h(r)>rg(r)h(r)ar
p); that is, when the binomial DF is guaranteed to be above/below its limiting Poisson DF. If such theorem doesn't exist, any idea or pointer in the right direction would be appreciated.
Please note that a similar question, phrased in terms of incomplete beta and gamma functions, was posted in math.stackexchange.com but got no answer.