800 obs가있는 data.frame이 있습니다. 40 개의 변수 중 하나이며 Principle Component Analysis를 사용하여 내 예측 결과를 향상 시키려고합니다 (지금까지는 15 가지 수동 변수에서 Support Vector Machine과 가장 잘 작동 함).
prcomp가 예측 향상에 도움이 될 수 있음을 이해하지만 prcomp 함수의 결과를 사용하는 방법을 모르겠습니다.
결과를 얻습니다.
> PCAAnalysis <- prcomp(TrainTrainingData, scale.=TRUE)
> summary(PCAAnalysis)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14
Standard deviation 1.7231 1.5802 1.3358 1.2542 1.1899 1.166 1.1249 1.1082 1.0888 1.0863 1.0805 1.0679 1.0568 1.0520
Proportion of Variance 0.0742 0.0624 0.0446 0.0393 0.0354 0.034 0.0316 0.0307 0.0296 0.0295 0.0292 0.0285 0.0279 0.0277
Cumulative Proportion 0.0742 0.1367 0.1813 0.2206 0.2560 0.290 0.3216 0.3523 0.3820 0.4115 0.4407 0.4692 0.4971 0.5248
PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28
Standard deviation 1.0419 1.0283 1.0170 1.0071 1.001 0.9923 0.9819 0.9691 0.9635 0.9451 0.9427 0.9238 0.9111 0.9073
Proportion of Variance 0.0271 0.0264 0.0259 0.0254 0.025 0.0246 0.0241 0.0235 0.0232 0.0223 0.0222 0.0213 0.0208 0.0206
Cumulative Proportion 0.5519 0.5783 0.6042 0.6296 0.655 0.6792 0.7033 0.7268 0.7500 0.7723 0.7945 0.8159 0.8366 0.8572
PC29 PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38
Standard deviation 0.8961 0.8825 0.8759 0.8617 0.8325 0.7643 0.7238 0.6704 0.60846 0.000000000000000765
Proportion of Variance 0.0201 0.0195 0.0192 0.0186 0.0173 0.0146 0.0131 0.0112 0.00926 0.000000000000000000
Cumulative Proportion 0.8773 0.8967 0.9159 0.9345 0.9518 0.9664 0.9795 0.9907 1.00000 1.000000000000000000
PC39 PC40
Standard deviation 0.000000000000000223 0.000000000000000223
Proportion of Variance 0.000000000000000000 0.000000000000000000
Cumulative Proportion 1.000000000000000000 1.000000000000000000
가장 중요한 매개 변수를 얻을 것이라고 생각했지만이 정보를 찾지 못했습니다. 내가 보는 것은 PC에서 표준 편차 등입니다. 그러나 이것을 예측에 어떻게 사용합니까?
pls
PCR ( Principal Component Regression ) 도구가있는 R 라이브러리 (Partial Least Squares )도 있습니다.