"무 가설을 쓰려면 어떻게해야합니까?" 다수의 그룹 중 일부 행동 (y / n)의 빈도에 대한 상표를 고려하십시오 . 첫 번째 그룹을 참조 자로 취급하면 빈도와 그룹 간의 연관성을 설명하는 승산 비 ( )가 있습니다.2×kkk−1θi,i=1,2,…,k−1
동질성과 마찬가지로 독립성에서 모든 승산 비는 1이라고 가정합니다. 즉, 조건에 "예"라고 응답 할 가능성은 그룹 할당과 상관없이 동일합니다. 이러한 가정이 실패하면 하나 이상의 그룹이 다릅니다.
H0(homogeneity):∑k−1i=1|θi|=0
H0(independence):∑k−1i=1|θi|=0
이 테스트는 그룹 멤버쉽에 대한 지표 변수를 조정하는 로지스틱 회귀 모델의 점수 테스트 인 관찰 / 예상 주파수를 사용한 Pearson Chi-square 테스트로 수행 할 수 있습니다 . 따라서 구조적으로 이러한 테스트는 동일하다고 말할 수 있습니다.k−1
그러나 그룹화 요소의 특성을 고려할 때 차이가 발생합니다. 이런 의미에서 시험의 맥락 적 적용 또는 그 이름이 중요하다. 그룹은 형질의 유전자 또는 대립 유전자 패턴의 존재 유무와 같은 결과의 직접적인 원인이 될 수 있습니다.이 경우 null을 거부하면 결과 가 해당 그룹화 요인에 따라 결정된다는 결론을 내립니다 .
다른 한편으로, 우리가 동질성을 테스트 할 때, 우리는 어떤 인과 적 가정을한다고 스스로를 소멸시킵니다. 따라서 "집단"이 인종과 같은 정교한 구조 (유전자, 행동 및 사회 경제적 결정 요인의 원인이되며 이와 같은 원인) 인 경우, "인종 박탈 지수의 이질성에 의해 입증 된 인종적 소수 민족이 주택 불균형을 경험한다"와 같은 결론을 내릴 수 있습니다. . 누군가가 "소수 민족, 낮은 교육 달성 낮은 소득, 덜 고용 얻을 수 있기 때문에 우물의"당신이 말할 수를 말함으로써 이러한 주장을 반박 경우, "나는 인종이 있다고 주장하지 않았다 인해 당신이 경우 단지 것을, 이런 것들을 보면 경주에서 자신의 생활 상태를 예측할 수 있습니다. "
그런 식으로 의존성 테스트는 숨어있는 요소의 가능한 효과가 관심이 있고 계층화 된 분석에서 처리되어야하는 동질성 테스트의 특별한 경우입니다. 유사한 로지스틱 회귀 모델에서 다변량 조정을 사용하면 그러한 일을 달성 할 수 있으며, 우리는 여전히 균질성이 아니라 의존성 테스트를 수행하고 있다고 말할 수 있습니다.