P- 값은 귀무 가설이 참이라고 가정 할 때 관찰 된 것 이상으로 검정 통계량을 얻을 확률을 정의합니다. 다시 말해,
그러나 검정 통계량이 분포에서 양봉이면 어떻게됩니까? p- 값이이 맥락에서 어떤 의미입니까? 예를 들어, R에서 일부 바이 모달 데이터를 시뮬레이션하려고합니다.
set.seed(0)
# Generate bi-modal distribution
bimodal <- c(rnorm(n=100,mean=25,sd=3),rnorm(n=100,mean=100,sd=5))
hist(bimodal, breaks=100)
그리고 검정 통계량 60을 관찰한다고 가정 해 봅시다. 그리고 여기서 우리 는이 값이 매우 드물다는 것을 그림에서 알 수 있습니다 . 그래서 이상적으로, 나는 이것을 밝히기 위해 사용하는 통계 절차 (예 : p- 값)를 원할 것입니다. 그러나 정의 된 p- 값을 계산하면 꽤 높은 p 값을 얻습니다.
observed <- 60
# Get P-value
sum(bimodal[bimodal >= 60])/sum(bimodal)
[1] 0.7991993
분포를 몰랐다면, 내가 관찰 한 것은 단순히 우연의 기회라는 결론을 내릴 것입니다. 그러나 우리는 이것이 사실이 아니라는 것을 알고 있습니다.
내가 가진 의문은 다음과 같습니다. 왜 p- 값을 계산할 때 관측 된 "적어도 극한"값에 대한 확률을 계산합니까? 그리고 위에서 시뮬레이션 한 것과 같은 상황이 발생하면 대체 솔루션은 무엇입니까?