도전
임의의 3 차원 입력 벡터 주어진 그에 따라, 작은 피드 포워드 신경망 찾기 에서 정수 항목과를 , 네트워크가 가장 큰 (즉, "가장 긍정적") 루트를 출력 다항식 는 오차가 보다 작습니다 .
허용 성
이전의 신경망 골프 챌린지 에서의 허용 개념은 다소 제한 적인 것으로 보였으 므로이 도전을 위해 피드 포워드 신경망에 대한보다 자유로운 정의를 사용하고 있습니다.
뉴런 함수이다 벡터로 지정 의 중량 하는 바이어스 및 활성화 함수 은 다음 방법 :
입력 노드 이있는 피드 포워드 신경망은 뉴런 의 시퀀스 ( ν k ) N k = n + 1 에서 생성 될 수있는 의 함수입니다 . 여기서 각 ν k : R k - 1 → R 은 ( x 1 , … , x을 스칼라 출력합니다. 일부 지정된 세트 감안의출력 노드는, 다음 신경망의 출력 벡터이다 .
특정 작업에 대해 활성화 기능을 조정할 수 있으므로이 과제를 흥미롭게 유지하기 위해 활성화 기능 클래스를 제한해야합니다. 다음과 같은 활성화 기능이 허용됩니다.
정체.
RELU.
SoftPlus.
S 자형.
정현파.
전반적으로, 허용 가능한 신경망은 입력 노드, 뉴런의 시퀀스 및 출력 노드에 의해 지정되는 반면, 각 뉴런은 위 목록의 가중치, 바이어스 및 활성화 함수로 벡터가 지정됩니다. 예를 들어, 다음과 같은 신경망은 허용되지만이 도전의 성능 목표를 충족하지는 않습니다.
입력 노드 :
뉴런 : 위한
출력 노드 :
이 네트워크는 8 개의 뉴런으로 구성되며 각 뉴런은 제로 바이어스와 신원 활성화를 갖습니다. 즉,이 네트워크는 및 의해 생성 된 일반화 된 피보나치 시퀀스를 계산 한 다음이 시퀀스에서 5, 9 및 10 번째 숫자를 순서대로 출력합니다.
채점
실수를 감안할 때 종료 진수 확장을,하자 가장 작은 음수가 아닌 정수가 될 되는 및하자 될 가장 작은 음이 아닌 정수 하는 정수이다. 그럼 우리가 말할 는 IS정밀의 .
예를 들어, 의 정밀도는 이고 의 정밀도는 입니다.
당신의 점수는 신경 네트워크에서 가중치와 바이어스의 정밀도의 합계입니다.
(예를 들어, 위 예제의 점수는 16입니다.)
확인
뿌리는 입방 공식 으로 표현할 수 있지만 가장 큰 뿌리는 아마도 숫자로 가장 쉽게 접근 할 수 있습니다. XNOR의 제안 @ 다음, 나는 정수의 모든 선택에 대한 가장 큰 루트를 계산 , B , C ∈ [ - 10 , 10 ] , 그리고 결과는 여기에서 찾을 수 있습니다 . 이 텍스트 파일의 각 줄은 형식 입니다. 예를 들어, 가장 큰 루트 첫 번째 줄의 보고서 것을 X 3 - 10 X 2 - 10 X - 10은 약 10.99247140445449 .a,b,c,root
편집 : 다항식이 다중 루트를 나타내는 경우 게시 한 원본 파일에 오류가 발생했습니다. 현재 버전에는 이러한 오류가 없어야합니다.
a
0이 아니거나 1 일 것이라고 말하는 것입니다 . 또한 일부 테스트 사례를 넣고 루트를 높은 정밀도로 제공하여 0.1 내에 있는지 확인할 수 있습니다. 또한 가능한 모든 입력에 대한 출력을 갖는 것이 좋으며, 아마도 게시물에 많은 영향을 미치므로 링크에있을 것입니다.
x -> a * sin(b * softplus(x) + c)
의 유한 수의 정수 x
로 임의 의 유한 수의 데이터 포인트를 능가 할 수 있다는 스케치 증거가 있습니다 .
a=0
와 같은 실제 뿌리가없고 2 차에 2 개의 복잡한 뿌리가 있습니까?