중간 값과 평균이 거의 같으면 대칭 분포가 있음을 의미하지만이 특별한 경우 확실하지 않습니다. 평균과 중앙값은 상당히 가깝고 (0.487m / 갤런 차이) 대칭 분포가 있다고 말하지만 박스 플롯을 보면 약간 긍정적으로 치우친 것처럼 보입니다 (확인 된 중앙값은 Q3보다 Q1에 가깝습니다) 값으로).
(이 소프트웨어에 대한 특정 조언이 있으면 Minitab을 사용하고 있습니다.)
중간 값과 평균이 거의 같으면 대칭 분포가 있음을 의미하지만이 특별한 경우 확실하지 않습니다. 평균과 중앙값은 상당히 가깝고 (0.487m / 갤런 차이) 대칭 분포가 있다고 말하지만 박스 플롯을 보면 약간 긍정적으로 치우친 것처럼 보입니다 (확인 된 중앙값은 Q3보다 Q1에 가깝습니다) 값으로).
(이 소프트웨어에 대한 특정 조언이 있으면 Minitab을 사용하고 있습니다.)
답변:
의심 할 여지없이 당신은 다른 말을 들었지만, 평균 중앙값은 대칭을 의미 하지 않습니다 .
평균 마이너스 중앙값 (두 번째 피어슨 왜도)을 기준으로 왜도 측정이 있지만 분포가 대칭이 아닌 경우 (일반적인 왜도 측정과 같이) 0이 될 수 있습니다.
마찬가지로, 평균과 중앙값 사이의 관계가 중간 힌지 ( )와 중앙값 사이의 유사한 관계를 의미하지는 않습니다 . 반대의 왜도를 제안하거나 하나는 중앙값과 같지만 다른 하나는 그렇지 않습니다.
대칭을 조사하는 한 가지 방법은 대칭 플롯 *을 사용하는 것입니다.
만약 최소에서 최대까지 정렬 관측 (순서 통계)이고, , 다음 대칭 플롯 플롯 중간 인 vs , vs 등. M Y ( N ) - M M - Y ( 1 ) Y ( N - 1 ) - M M - Y ( 2 )
* Minitab은이를 수행 할 수 있습니다 . 실제로이 도표를 Minitab에서 수행 한 것을 보았으므로이 도표를 가능성으로 제기합니다.
다음은 네 가지 예입니다.
(실제 분포는 (왼쪽에서 오른쪽, 맨 위 행)-Laplace, Gamma (모양 = 0.8), beta (2,2) 및 beta (5,2)입니다. 코드는 여기 에서 Ross Ihaka입니다 )
두꺼운 꼬리 대칭 예제의 경우 가장 극단적 인 점이 선에서 매우 멀리 떨어져있는 경우가 종종 있습니다. 그림 오른쪽 상단 가까이에있을 때 하나 또는 두 점의 선으로부터의 거리에 덜주의를 기울입니다.
물론 다른 음모가 있습니다 (나는 특정 음모에 대한 특정 옹호의 의미가 아니라 이미 Minitab에서 구현되었음을 알았 기 때문에 대칭 음모를 언급했습니다). 그럼 다른 것들을 살펴 봅시다.
Nick Cox가 의견에서 제안한 해당 skewplots는 다음과 같습니다.
이 그림에서 추세 상승은 왼쪽보다 일반적으로 오른쪽 꼬리가 무겁고, 아래쪽 경향은 오른쪽보다 일반적으로 왼쪽 꼬리가 무겁다는 것을 나타냅니다.
Nick은이 음모가 더 우수하다고 제안합니다 (특히 "직접"). 나는 동의하는 경향이있다. 플롯의 해석은 결과적으로 약간 더 쉬워 보이지만 해당 플롯의 정보는 종종 매우 유사합니다 (첫 번째 세트에서 단위 경사를 뺀 후 두 번째 세트와 매우 유사한 것을 얻습니다).
[물론, 이러한 것들 중 어느 것도 데이터가 도출 된 분포가 실제로 대칭 적이라고 말하지 않을 것입니다. 우리는 표본이 얼마나 가까운 지에 대한 지표를 얻었고, 그 정도로 데이터가 대략적으로 가까운 인구 집단으로부터 도출 된 것과 일치하는지 판단 할 수있다.]
skewplot
이 아이디어는 적어도 윌크 (Wilk)의 JW Tukey와 1968 년 Gnanadesikan의 R. 1968에 근거한 제안으로 거슬러 올라갑니다. 데이터 분석을위한 확률 플로팅 방법. Biometrika 55 : 1-17.
가장 쉬운 방법은 샘플 왜도 를 계산하는 것입니다 . Minitab에는이를위한 기능이 있습니다. 대칭 분포는 왜도가 없습니다. 제로 왜곡이 반드시 대칭을 의미하는 것은 아니지만 대부분의 실제 경우에 그러합니다.
@NickCox가 지적했듯이, 왜도에 대한 정의는 둘 이상입니다. Excel과 호환되는 것을 사용 하지만 다른 것을 사용할 수 있습니다.
관측 값을 한 열에 증가하는 값으로 정렬 한 다음 다른 열에 감소하는 값으로 정렬합니다.
그런 다음이 두 열 사이의 상관 계수 (Rm이라고 함)를 계산하십시오.
키랄 지수를 계산하십시오 : CHI = (1 + Rm) / 2.
CHI는 [0..1] 간격으로 값을 가져옵니다.
CHI는 표본이 대칭 적으로 분포되어있는 경우에만 null입니다.
세 번째 순간이 필요 없습니다.
이론 :
http://petitjeanmichel.free.fr/itoweb.petitjean.skewness.html
http://petitjeanmichel.free.fr/itoweb.petitjean.html
(대부분의 논문은이 두 페이지에 인용 된 PDF 파일로 다운로드 할 수있다)
희망이 최근에도 도움이됩니다.