반복 측정에 문제가있는 일부 데이터로 작업하고 있습니다. 사이에 그렇게 나는 매우 다른 행동을 발견 lme()
하고 lmer()
내 테스트 데이터를 사용하는 이유를 알고 싶어합니다.
내가 만든 가짜 데이터 세트에는 10 명의 피험자에 대한 키와 체중 측정이 있으며 각각 두 번씩 측정됩니다. 나는 피험자들 사이에 키와 몸무게 사이에는 긍정적 인 관계가 있지만 각 개인 내에서 반복되는 측정 사이에는 부정적인 관계가 있도록 데이터를 설정했습니다.
set.seed(21)
Height=1:10; Height=Height+runif(10,min=0,max=3) #First height measurement
Weight=1:10; Weight=Weight+runif(10,min=0,max=3) #First weight measurement
Height2=Height+runif(10,min=0,max=1) #second height measurement
Weight2=Weight-runif(10,min=0,max=1) #second weight measurement
Height=c(Height,Height2) #combine height and wight measurements
Weight=c(Weight,Weight2)
DF=data.frame(Height,Weight) #generate data frame
DF$ID=as.factor(rep(1:10,2)) #add subject ID
DF$Number=as.factor(c(rep(1,10),rep(2,10))) #differentiate between first and second measurement
다음은 각 개인의 두 측정 값을 연결하는 선이있는 데이터 플롯입니다.
그래서 패키지 lme()
에서 하나와 from에서 두 가지 모델을 실행 했습니다 . 두 경우 모두 나는 각 개인의 반복 측정을 제어하기 위해 ID의 무작위 효과로 키에 대한 체중의 회귀를 실행했습니다.nlme
lmer()
lme4
library(nlme)
Mlme=lme(Height~Weight,random=~1|ID,data=DF)
library(lme4)
Mlmer=lmer(Height~Weight+(1|ID),data=DF)
이 두 모델은 종종 (종자에 따라 항상 그런 것은 아니지만) 완전히 다른 결과를 생성했습니다. 나는 그들이 약간 다른 분산 추정치를 생성하고 다른 자유도 등을 계산하는 곳을 보았지만 여기서 계수는 반대 방향입니다.
coef(Mlme)
# (Intercept) Weight
#1 1.57102183 0.7477639
#2 -0.08765784 0.7477639
#3 3.33128509 0.7477639
#4 1.09639883 0.7477639
#5 4.08969282 0.7477639
#6 4.48649982 0.7477639
#7 1.37824171 0.7477639
#8 2.54690995 0.7477639
#9 4.43051687 0.7477639
#10 4.04812243 0.7477639
coef(Mlmer)
# (Intercept) Weight
#1 4.689264 -0.516824
#2 5.427231 -0.516824
#3 6.943274 -0.516824
#4 7.832617 -0.516824
#5 10.656164 -0.516824
#6 12.256954 -0.516824
#7 11.963619 -0.516824
#8 13.304242 -0.516824
#9 17.637284 -0.516824
#10 18.883624 -0.516824
시각적으로 설명하기 위해 lme()
그리고 모델 lmer()
왜이 모델들이 그렇게 많이 다른가?