일부 모델 매개 변수가 일부 그룹화 요인에 따라 무작위로 변한다고 생각할 때 임의 효과 (또는 혼합 효과) 모델을 사용한다는 것을 알고 있습니다. 응답이 정규화되고 그룹화 요소 전체에서 중심이 (완벽하지는 않지만 꽤 가깝습니다) 모델을 맞추고 싶지만 독립 변수 x
는 어떤 식으로도 조정되지 않았습니다. 이로 인해 다음과 같은 테스트 ( 제조 된 데이터 사용)를 통해 실제로 원하는 경우 내가 찾은 효과를 찾을 수 있는지 확인했습니다. 랜덤 인터셉트 (로 정의 된 그룹 간)가있는 혼합 효과 모델 하나 와 요인 f를 고정 효과 예측 변수로 사용 f
하는 두 번째 고정 효과 모델을 실행했습니다. lmer
혼합 효과 모델과 기본 기능에 R 패키지 를 사용했습니다.lm()
고정 효과 모델의 경우 다음은 데이터와 결과입니다.
공지 사항 y
에 관계없이 그룹의 주위 0 다릅니다 그리고 그것은, x
함께 지속적으로 변화 y
보다 그룹에서 더 많은 그룹 내에서, 그러나 변화y
> data
y x f
1 -0.5 2 1
2 0.0 3 1
3 0.5 4 1
4 -0.6 -4 2
5 0.0 -3 2
6 0.6 -2 2
7 -0.2 13 3
8 0.1 14 3
9 0.4 15 3
10 -0.5 -15 4
11 -0.1 -14 4
12 0.4 -13 4
데이터 작업에 관심이 있다면 다음과 같이 dput()
출력됩니다.
data<-structure(list(y = c(-0.5, 0, 0.5, -0.6, 0, 0.6, -0.2, 0.1, 0.4,
-0.5, -0.1, 0.4), x = c(2, 3, 4, -4, -3, -2, 13, 14, 15, -15,
-14, -13), f = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L), .Label = c("1", "2", "3", "4"), class = "factor")),
.Names = c("y","x","f"), row.names = c(NA, -12L), class = "data.frame")
혼합 효과 모델 맞추기 :
> summary(lmer(y~ x + (1|f),data=data))
Linear mixed model fit by REML
Formula: y ~ x + (1 | f)
Data: data
AIC BIC logLik deviance REMLdev
28.59 30.53 -10.3 11 20.59
Random effects:
Groups Name Variance Std.Dev.
f (Intercept) 0.00000 0.00000
Residual 0.17567 0.41913
Number of obs: 12, groups: f, 4
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.008333 0.120992 0.069
x 0.008643 0.011912 0.726
Correlation of Fixed Effects:
(Intr)
x 0.000
절편 분산 성분은 0으로 추정되며, 중요한 것은 나에게 x
중요한 예측 변수가 아니라는 점에 유의하십시오 y
.
다음 f
으로 임의의 절편에 대한 그룹화 요소 대신 예측 효과로 고정 효과 모델을 맞 춥니 다 .
> summary(lm(y~ x + f,data=data))
Call:
lm(formula = y ~ x + f, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.16250 -0.03438 0.00000 0.03125 0.16250
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.38750 0.14099 -9.841 2.38e-05 ***
x 0.46250 0.04128 11.205 1.01e-05 ***
f2 2.77500 0.26538 10.457 1.59e-05 ***
f3 -4.98750 0.46396 -10.750 1.33e-05 ***
f4 7.79583 0.70817 11.008 1.13e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.1168 on 7 degrees of freedom
Multiple R-squared: 0.9484, Adjusted R-squared: 0.9189
F-statistic: 32.16 on 4 and 7 DF, p-value: 0.0001348
이제 예상 한대로 x
의 중요한 예측 변수라는 것을 알았습니다 y
.
내가 찾고있는 것은이 차이점에 관한 직관입니다. 내 생각이 어떻게 잘못 되었나요? 왜이 x
두 모델에서 중요한 매개 변수를 찾을 것으로 예상 하지만 실제로 고정 효과 모델에서만 볼 수 있습니까?
x
변수가 중요 하지 않다는 것은 놀라운 일 이 아닙니다. 나는 그것이 당신이 달리는 것과 같은 결과 (계수와 SE)라고 생각합니다lm(y~x,data=data)
. 진단 할 시간이 더 이상 없지만 이것을 지적하고 싶었습니다.