답변:
예측은 추정 된 계수의 선형 조합 일뿐입니다. 계수는 무정형 정규이므로 이러한 계수의 선형 조합도 무정형 정규입니다. 따라서 모수 추정값에 대한 공분산 행렬을 얻을 수 있으면 해당 추정값의 선형 조합에 대한 표준 오차를 쉽게 얻을 수 있습니다. 공분산 행렬을 로 나타내고 벡터에 내 선형 조합에 대한 계수를 C 로 쓰면 표준 오차는 √입니다.
# Making fake data and fitting the model and getting a prediction
set.seed(500)
dat <- data.frame(x = runif(20), y = rbinom(20, 1, .5))
o <- glm(y ~ x, data = dat)
pred <- predict(o, newdata = data.frame(x=1.5), se.fit = TRUE)
# To obtain a prediction for x=1.5 I'm really
# asking for yhat = b0 + 1.5*b1 so my
# C = c(1, 1.5)
# and vcov applied to the glm object gives me
# the covariance matrix for the estimates
C <- c(1, 1.5)
std.er <- sqrt(t(C) %*% vcov(o) %*% C)
> pred$se.fit
[1] 0.4246289
> std.er
[,1]
[1,] 0.4246289
우리가 보여주는 '수동'방법은 다음을 통해보고 된 것과 동일한 표준 오류를 나타냅니다. predict
o <- glm(y ~ x, data = dat, family = binomial)
대신 적합해야 합니다. 제발 수정 해 주시겠습니까? 귀하의 설명합니다 (사용하여 로그 확률 SE 추정 작동 type = "link"
옵션)가 아니라 SE 때 predict
용도 type = "response"
옵션을 선택합니다.