누구든지 종단 데이터 사용 aov()
과 lme()
분석 의 차이점 과이 두 가지 방법의 결과를 해석하는 방법을 구별 할 수 있습니까 ?
다음, 나는 같은 사용하여 데이터 세트 분석 aov()
및 lme()
2 개 다른 결과를 얻었다. 를 사용하면 aov()
치료 상호 작용으로 시간에 중요한 결과를 얻었지만 선형 혼합 모델을 피팅하면 치료 상호 작용으로 시간이 중요하지 않습니다.
> UOP.kg.aov <- aov(UOP.kg~time*treat+Error(id), raw3.42)
> summary(UOP.kg.aov)
Error: id
Df Sum Sq Mean Sq F value Pr(>F)
treat 1 0.142 0.1421 0.0377 0.8471
Residuals 39 147.129 3.7725
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
time 1 194.087 194.087 534.3542 < 2e-16 ***
time:treat 1 2.077 2.077 5.7197 0.01792 *
Residuals 162 58.841 0.363
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> UOP.kg.lme <- lme(UOP.kg~time*treat, random=list(id=pdDiag(~time)),
na.action=na.omit, raw3.42)
> summary(UOP.kg.lme)
Linear mixed-effects model fit by REML
Data: raw3.42
AIC BIC logLik
225.7806 248.9037 -105.8903
Random effects:
Formula: ~time | id
Structure: Diagonal
(Intercept) time Residual
StdDev: 0.6817425 0.5121545 0.1780466
Fixed effects: UOP.kg ~ time + treat + time:treat
Value Std.Error DF t-value p-value
(Intercept) 0.5901420 0.1480515 162 3.986059 0.0001
time 0.8623864 0.1104533 162 7.807701 0.0000
treat -0.2144487 0.2174843 39 -0.986042 0.3302
time:treat 0.1979578 0.1622534 162 1.220053 0.2242
Correlation:
(Intr) time treat
time -0.023
treat -0.681 0.016
time:treat 0.016 -0.681 -0.023
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.198315285 -0.384858426 0.002705899 0.404637305 2.049705655
Number of Observations: 205
Number of Groups: 41