Morey et al (2015)은 신뢰 구간은 오도의 소지가 있으며 이들에 대한 이해와 관련하여 여러 가지 편견이 있다고 주장한다. 그중에서도 정확성 오류는 다음과 같이 설명합니다.
정밀도 오류
신뢰 구간의 너비는 모수에 대한 지식의 정밀도를 나타냅니다. 좁은 신뢰 구간은 정확한 지식을 나타내고 넓은 신뢰 오차는 부정확 한 지식을 나타냅니다.추정의 정밀도와 신뢰 구간의 크기 사이에는 필요한 연결이 없습니다. 이것을 보는 한 가지 방법은 선임 연구원과 박사 과정 학생 인 두 연구원 이 실험에서 참가자 데이터를 분석하고 있다고 상상 하는 것입니다. 박사 과정 학생의 이익을위한 운동으로, 선임 연구원은 참가자들을 무작위로 데이터 세트의 절반을 분석 할 수 있도록 두 세트로 무작위로 나누기로 결정합니다 . 후속 회의에서, 하나 두 점유율은 또 다른 자신의 학생의 평균에 대한 신뢰 구간. 박사 과정 학생의 CI는 이고, 선임 연구원의 CI는 입니다.
선임 연구원은 결과가 광범위하게 일관되며, 각각의 두 점 추정치 ( 의 동일 가중 평균을 실제 평균의 전체 추정치로 사용할 수 있다고 지적 합니다.
그러나 박사 과정 학생은 두 가지 방법이 균등하게 가중치를 부여해서는 안된다고 주장한다. 그녀는 CI의 절반이 넓고 자신의 추정치가 더 정확하고 더 가중되어야한다고 주장한다. 그녀의 고문에 따르면, 두 평균의 불균일 한 가중치 추정치가 전체 데이터 세트 의 추정치와 다르므로 이어야합니다 . 박사 과정 학생의 실수는 CI가 사후 데이터 정밀도를 직접적으로 나타내는 것으로 가정합니다.
위의 예는 잘못된 것 같습니다. 표본을 무작위로 반으로 나누어 두 표본으로 나누면 표본 평균과 표준 오차가 모두 가깝습니다. 이러한 경우 가중 평균 사용 (예 : 역 오차에 의한 가중)과 간단한 산술 평균 사용간에 차이가 없어야합니다. 그러나 추정치가 다르고 표본 중 하나의 오류가 눈에 띄게 더 큰 경우 이러한 표본의 "문제"를 제안 할 수 있습니다.
명백하게, 상기 예에서, 샘플 크기는 동일하므로, 평균을 취함으로써 데이터를 "결합"하는 것은 전체 샘플의 평균을 취하는 것과 동일하다. 문제는 전체 예제가 샘플이 먼저 부분적으로 나뉘어져 최종 추정을 위해 다시 결합된다는 잘못 정의 된 논리를 따른다는 것입니다.
이 예제는 정확하게 반대의 결론으로 이어질 수 있습니다 :
연구원과 학생은 데이터 세트를 두 부분으로 나누고 독립적으로 분석하기로 결정했습니다. 그 후, 그들은 그들의 추정치를 비교했고 그 표본은 그들이 계산 한 것이 매우 다르다는 것을 의미하는 것으로 보였으며, 또한 학생의 추정치의 표준 오차가 훨씬 컸습니다. 학생은 이것이 자신의 추정 정확도와 관련된 문제를 제안 할 수 있다는 것을 두려워했지만, 연구원은 신뢰 구간과 정밀도 사이에 연관성이 없음을 암시하여 두 추정치 모두 동일하게 신뢰할 수 있으며 무작위로 선택한 임의의 값을 게시 할 수 있습니다. 최종 견적으로.
더 공식적으로 말하면, 학생의 와 같은 "표준"신뢰 구간 은 오류를 기반으로합니다.
여기서 는 상수입니다. 이런 경우, 그것들은 정밀도와 직접 관련 이 있습니다 .
내 질문은 :
정밀도 오류는 실제로 오류입니까? 정밀도에 대한 신뢰 구간은 무엇을 말합니까?
Morey, R., Hoekstra, R., Rouder, J., Lee, M. 및 Wagenmakers, E.-J. (2015). 신뢰 구간에 신뢰를 두는 오류. 심리학 적 게시판 및 검토, 1–21. https://learnbayes.org/papers/confidenceIntervalsFallacy/