2
시끄러운 레이블로 분류?
분류를 위해 신경망을 훈련하려고하지만 레이블이 다소 시끄 럽습니다 (라벨의 약 30 %가 잘못되었습니다). 교차 엔트로피 손실이 실제로 작동하지만이 경우 더 효과적인 대안이 있는지 궁금합니다. 또는 교차 엔트로피 손실이 최적입니까? 확실하지는 않지만 교차 엔트로피 손실을 어느 정도 "클리핑"하여 하나의 데이터 포인트에 대한 손실이 상한보다 크지 않을 것이라고 생각하고 있습니까? 감사! 업데이트 …