«weka» 태그된 질문

1
오류 측정을 해석하는 방법?
특정 데이터 세트에 대해 Weka에서 분류를 실행 중이며 공칭 ​​값을 예측하려고하면 출력에 정확하고 잘못 예측 된 값이 구체적으로 표시됩니다. 그러나 이제 숫자 속성으로 실행하고 출력은 다음과 같습니다. Correlation coefficient 0.3305 Mean absolute error 11.6268 Root mean squared error 46.8547 Relative absolute error 89.2645 % Root relative squared error 94.3886 % …

1
R-자유도에서 PROC Mixed과 lme / lmer의 차이점
참고 :이 질문은 법적 이유로 인해 이전 질문을 삭제해야했기 때문에 다시 게시되었습니다. SAS의 PROC MIXED를 R lme의 nlme패키지 기능과 비교하는 동안 다소 혼란스러운 차이점을 발견했습니다. 구체적으로는, 다른 시험에서 자유도간에 상이 PROC MIXED하고 lme, 그리고 왜 생각해. 다음 데이터 세트에서 시작하십시오 (아래 제공된 R 코드). ind : 측정 대상을 나타내는 계수 …
12 r  mixed-model  sas  degrees-of-freedom  pdf  unbiased-estimator  distance-functions  functional-data-analysis  hellinger  time-series  outliers  c++  relative-risk  absolute-risk  rare-events  regression  t-test  multiple-regression  survival  teaching  multiple-regression  regression  self-study  t-distribution  machine-learning  recommender-system  self-study  binomial  standard-deviation  data-visualization  r  predictive-models  pearson-r  spearman-rho  r  regression  modeling  r  categorical-data  data-visualization  ggplot2  many-categories  machine-learning  cross-validation  weka  microarray  variance  sampling  monte-carlo  regression  cross-validation  model-selection  feature-selection  elastic-net  distance-functions  information-theory  r  regression  mixed-model  random-effects-model  fixed-effects-model  dataset  data-mining 

4
불확실한 클래스 레이블 분류기
클래스 레이블이 연결된 인스턴스 집합이 있다고 가정 해 봅시다. 이러한 인스턴스가 어떻게 표시 되었는지 는 중요하지 않지만 클래스 멤버쉽은 얼마나 확실 합니다. 각 인스턴스는 정확히 하나의 클래스에 속합니다 . 각 클래스 멤버쉽의 확실성을 1에서 3까지의 명목 속성으로 정량화 할 수 있다고 가정합니다 (각각 불확실 함). 그러한 확실성 측정을 고려하는 분류 …
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.