«prediction» 태그된 질문

5
ARIMA vs LSTM을 사용한 시계열 예측
내가 다루고있는 문제는 시계열 값을 예측하는 것입니다. 한 번에 하나의 시계열을보고 있으며 입력 데이터의 15 %를 기준으로 미래 값을 예측하고 싶습니다. 지금까지 나는 두 가지 모델을 보았습니다. LSTM (장기 단기 기억, 반복 신경망의 클래스) 아리마 나는 둘 다 시도하고 그들에 대한 기사를 읽었습니다. 이제 두 가지를 비교하는 방법에 대해 더 …

5
seaborn 히트 맵을 더 크게 만들기
corr()원본 df 에서 df를 만듭니다 . corr()DF는 70 X 70에서 나와는 히트 맵을 시각화하는 것은 불가능합니다 ... sns.heatmap(df). 를 표시하려고 corr = df.corr()하면 테이블이 화면에 맞지 않으며 모든 상관 관계를 볼 수 있습니다. df크기에 관계없이 전체를 인쇄 하거나 히트 맵의 크기를 제어하는 ​​방법입니까?
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
LSTM 시계열 예측 주위의 예측 구간
LSTM (또는 다른 반복적) 신경망으로부터 시계열 예측에 대한 예측 간격 (확률 분포)을 계산하는 방법이 있습니까? 예를 들어, 마지막 10 개의 관측 된 샘플 (t-9 ~ t)을 기반으로 미래에 10 개의 샘플 (t + 1 ~ t + 10)을 예측한다고 가정하면, t + 1에서의 예측은 더 많을 것으로 예상됩니다 t + …

1
몇 개의 LSTM 셀을 사용해야합니까?
사용해야하는 최소, 최대 및 "합리적인"양의 LSTM 셀과 관련된 경험 법칙 (또는 실제 규칙)이 있습니까? 특히 TensorFlow 및 속성의 BasicLSTMCell 과 관련이 num_units있습니다. 분류 문제가 다음과 같이 정의되었다고 가정하십시오. t - number of time steps n - length of input vector in each time step m - length of output vector …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
파이썬에 적합한 기본 언어 모델이 있습니까?
응용 프로그램을 프로토 타이핑하고 있으며 생성 된 일부 문장의 난이도를 계산하려면 언어 모델이 필요합니다. 파이썬에서 쉽게 사용할 수있는 훈련 된 언어 모델이 있습니까? 간단한 것 model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert p1 < p2 일부 프레임 워크를 …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

1
Keras를 사용하여 미래 시간대의 미래 가치를 예측하는 방법은 무엇입니까?
방금 Keras로 LSTM 신경망을 구축 했습니다. import numpy as np import pandas as pd from sklearn import preprocessing from keras.layers.core import Dense, Dropout, Activation from keras.activations import linear from keras.layers.recurrent import LSTM from keras.models import Sequential from matplotlib import pyplot #read and prepare data from datafile data_file_name = "DailyDemand.csv" data_csv …

2
표본 외 데이터 과적 합에 대해 100 % 모델 정확도가 있습니까?
cognitiveclass.ai에서 R 과정에 대한 기계 학습을 마쳤으며 randomforests를 실험하기 시작했습니다. R의 "randomForest"라이브러리를 사용하여 모델을 만들었습니다.이 모델은 좋거나 나쁜 두 클래스로 분류됩니다. 모델이 과적 합되면 자체 훈련 세트의 데이터에서는 잘 수행되지만 샘플에서 벗어난 데이터에서는 제대로 수행되지 않습니다. 내 모델을 훈련하고 테스트하기 위해 전체 데이터 세트를 섞어서 훈련 용 70 %와 테스트 …
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.