«residual-networks» 태그된 질문

5
머신 러닝에서 계층 적 / 중첩 된 데이터를 처리하는 방법
예를 들어 내 문제를 설명하겠습니다. {나이, 성별, 국가, 지역, 도시}와 같은 속성이 주어진 개인의 소득을 예측한다고 가정합니다. 당신은 이와 같은 훈련 데이터 세트를 가지고 있습니다 train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID Age …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
딥 러닝의 딥 레지던트 네트워크와 관련하여 레거시 학습 블록은 정확히 무엇입니까?
나는 이미지 인식을위한 딥 레지던트 학습 (Deep Residual Learning)을 읽고 있었고, 잔차 블록이 계산적으로 수반하는 것을 100 % 확실하게 이해하는 데 어려움을 겪었습니다. 그들의 논문을 읽고 그들은 그림 2를 가지고 있습니다. Residual Block이 무엇을 의미하는지 보여줍니다. 잔차 블록의 계산은 단순히 다음과 같습니다. y =σ( W2σ( W1x + b1) + b2+ …

2
잔류 네트워크는 그라디언트 부스팅과 관련이 있습니까?
최근에, 우리는 Residual Neural Net의 출현을 보았습니다. 여기서 각 레이어는 계산 모듈 와 i 번째 레이어의 출력과 같이 레이어에 대한 입력을 유지하는 바로 가기 연결 로 구성됩니다 . 네트워크는 잔존 피처를 추출 할 수 있으며 깊이가 더 깊어지면서 배니싱 그라디언트 문제에 대해보다 강력한 성능을 제공하여 최첨단 성능을 달성합니다.y i + …
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.