GBM 패키지와 GBM을 사용하는 Caret


13

을 사용하여 모델 튜닝을 수행 caret했지만 gbm패키지를 사용하여 모델을 다시 실행했습니다 . caret패키지가 사용 gbm하고 출력이 동일해야한다는 것을 이해합니다 . 그러나 data(iris)RMSE와 R ^ 2를 평가 지표로 사용하면 약 5 %의 모델에서 불일치가 발생합니다. 부분 종속성 플롯을 사용 하기 위해 최적의 모델 성능을 찾고 caret싶지만 다시 실행 하고 싶습니다 gbm. 재현성을 위해 아래 코드를 작성하십시오.

내 질문은 :

1) 왜이 두 패키지가 동일해야하는데 왜 차이가 나는가 (왜냐하면 그것들은 확률 적이지만 5 %는 큰 차이가 있음을 이해합니다. 특히 iris모델링 과 같은 멋진 데이터 세트를 사용하지 않을 때 ) .

2) 두 패키지를 모두 사용하면 어떤 장단점이 있습니까?

3) 관련이 없음 : iris데이터 세트를 사용하면 최적의 값 interaction.depth이 5이지만 내가 읽은 것보다 최대를 사용해야 floor(sqrt(ncol(iris)))하는 것보다 2가 높습니다 . 이것은 엄격한 경험 규칙입니까, 아니면 매우 유연합니까?

library(caret)
library(gbm)
library(hydroGOF)
library(Metrics)
data(iris)

# Using caret
caretGrid <- expand.grid(interaction.depth=c(1, 3, 5), n.trees = (0:50)*50,
                   shrinkage=c(0.01, 0.001),
                   n.minobsinnode=10)
metric <- "RMSE"
trainControl <- trainControl(method="cv", number=10)

set.seed(99)
gbm.caret <- train(Sepal.Length ~ ., data=iris, distribution="gaussian", method="gbm",
              trControl=trainControl, verbose=FALSE, 
              tuneGrid=caretGrid, metric=metric, bag.fraction=0.75)                  

print(gbm.caret)
# caret determines the optimal model to be at n.tress=700, interaction.depth=5, shrinkage=0.01
# and n.minobsinnode=10
# RMSE = 0.3247354
# R^2 = 0.8604

# Using GBM
set.seed(99)
gbm.gbm <- gbm(Sepal.Length ~ ., data=iris, distribution="gaussian", n.trees=700, interaction.depth=5,
           n.minobsinnode=10, shrinkage=0.01, bag.fraction=0.75, cv.folds=10, verbose=FALSE)
best.iter <- gbm.perf(gbm.gbm, method="cv")
print(best.iter)
# Here the optimal n.trees = 540

train.predict <- predict.gbm(object=gbm.gbm, newdata=iris, 700)

print(rmse(iris$Sepal.Length, train.predict))
# RMSE = 0.2377

R2 <- cor(gbm.gbm$fit, iris$Sepal.Length)^2
print(R2)
# R^2 = 0.9178`

답변:


6

기본 그리드와 함께 사용하여 매개 변수를 최적화하고 예측을 사용하여 동일한 결과를 얻습니다.

R2.caret-R2.gbm = 0.0009125435

rmse.caret-rmse.gbm = -0.001680319

library(caret)
library(gbm)
library(hydroGOF)
library(Metrics)
data(iris)

# Using caret with the default grid to optimize tune parameters automatically
# GBM Tuning parameters:
# n.trees (# Boosting Iterations)
# interaction.depth (Max Tree Depth)
# shrinkage (Shrinkage)
# n.minobsinnode (Min. Terminal Node Size)

metric <- "RMSE"
trainControl <- trainControl(method="cv", number=10)

set.seed(99)
gbm.caret <- train(Sepal.Length ~ .
                   , data=iris
                   , distribution="gaussian"
                   , method="gbm"
                   , trControl=trainControl
                   , verbose=FALSE
                   #, tuneGrid=caretGrid
                   , metric=metric
                   , bag.fraction=0.75
                   )                  

print(gbm.caret)

caret.predict <- predict(gbm.caret, newdata=iris, type="raw")

rmse.caret<-rmse(iris$Sepal.Length, caret.predict)
print(rmse.caret)

R2.caret <- cor(gbm.caret$finalModel$fit, iris$Sepal.Length)^2
print(R2.caret)

#using gbm without caret with the same parameters
set.seed(99)
gbm.gbm <- gbm(Sepal.Length ~ .
               , data=iris
               , distribution="gaussian"
               , n.trees=150
               , interaction.depth=3
               , n.minobsinnode=10
               , shrinkage=0.1
               , bag.fraction=0.75
               , cv.folds=10
               , verbose=FALSE
               )
best.iter <- gbm.perf(gbm.gbm, method="cv")
print(best.iter)

train.predict <- predict.gbm(object=gbm.gbm, newdata=iris, 150)

rmse.gbm<-rmse(iris$Sepal.Length, train.predict)
print(rmse.gbm)

R2.gbm <- cor(gbm.gbm$fit, iris$Sepal.Length)^2
print(R2.gbm)

print(R2.caret-R2.gbm)
print(rmse.caret-rmse.gbm)
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.