데이터 행렬이 대각선 일 때 올가미 문제에 대한 닫힌 양식 솔루션
\newcommand{\diag}{\operatorname{diag}} 문제가 있습니다 : minw∈Rd(1n∑i=1n(⟨w,xi⟩−yi)2+2λ||w||1),minw∈Rd(1n∑i=1n(⟨w,xi⟩−yi)2+2λ||w||1),\min_{w\in\mathbb{R}^{d}}\left( \frac{1}{n}\sum_{i=1}^{n} \left( \langle w,x_{i}\rangle-y_{i} \right)^{2} +2\lambda||w||_1\right), : ∑i=1nxixTi=diag(σ21,...,σ2d).∑i=1nxixiT=diag(σ12,...,σd2).\sum_{i=1}^nx_ix_i^T=\diag(\sigma_1^2,...,\sigma_d^2). 이 경우 폐쇄 형 솔루션이 있습니까? 나는 그것을 가지고있다 : (XTX)−1=diag(σ−21,...,σ−2d),(XTX)−1=diag(σ1−2,...,σd−2),(X^TX)^{-1}=\diag\left(\sigma_1^{-2},...,\sigma_d^{-2}\right), 그래서 대답은 : wj=yjmax{0,1−λn|yj|},wj=yjmax{0,1−λn|yj|},w\,^j=y\,^j\max\left\{0,1-\lambda \frac{n}{|y^j|}\right\}, 에 대한 yj=∑i=1nyixijσ2iyj=∑i=1nyixijσi2y\,^j=\displaystyle\sum_{i=1}^n\frac{y_ix_i\,^j}{\sigma_i^2} 하지만 확실하지 않습니다.