FEM : 강성 매트릭스의 특이성
(σ2(x)u′′(x))′′=f(x),0⩽x⩽1(σ2(x)u″(x))″=f(x),0⩽x⩽1 \left( \sigma^{2}(x) u ''(x) \right)'' = f(x), \;\;\; 0 \leqslant x \leqslant 1 u(0)=u(1)=0u(0)=u(1)=0u(0) = u(1) = 0u′′(0)=u′′(1)=0u″(0)=u″(1)=0u''(0) = u''(1) = 0σ(x)⩾σ0>0σ(x)⩾σ0>0\sigma(x) \geqslant \sigma_{0} > 0Au=fAu=fAu = fAAA FEM 체계에 따라 문제를 최적화 문제로 줄입니다. J(u)=(Au,u)−2(f,u)→minuJ(u)=(Au,u)−2(f,u)→minu J(u) = (Au,u) - 2(f,u) \to \min_{u} 유한 요소 hk(x)hk(x)h_{k}(x) 를 vk(x)=⎧⎩⎨1−(x−xkh)2,0,x∈[xk−1,xk+1]otherwisevk(x)={1−(x−xkh)2,x∈[xk−1,xk+1]0,otherwise v_{k}(x) …