비대칭 제안서 배포를 통한 대도시 해 스팅 이해
모델의 매개 변수를 추정하기위한 코드를 작성하기 위해 Metropolis-Hastings 알고리즘을 이해하려고 노력했습니다 (예 : f(x)=a∗xf(x)=a∗xf(x)=a*x ). 참고 문헌에 따르면 Metropolis-Hastings 알고리즘에는 다음 단계가 있습니다. 생성 Yt∼q(y|xt)Yt∼q(y|xt)Y_t \sim q(y|x^t) Xt+1={Yt,xt,with probabilityρ(xt,Yt),with probability1−ρ(xt,Yt),Xt+1={Yt,with probabilityρ(xt,Yt),xt,with probability1−ρ(xt,Yt),X^{t+1}=\begin{cases} Y^t, & \text{with probability} \quad \rho(x^t,Y_t), \\ x^t, & \text{with probability} \quad 1-\rho(x^t,Y_t), \end{cases} ρ(x,y)=min(f(y)f(x)∗q(x|y)q(y|x),1)ρ(x,y)=min(f(y)f(x)∗q(x|y)q(y|x),1)\rho(x,y)=\min \left( \frac{f(y)}{f(x)}*\frac{q(x|y)}{q(y|x)},1 \right) …