표본 상관 계수가 모집단 상관 계수의 편향 추정치입니까?
가 대해 편향 추정치 라는 것이 사실 입니까? 즉, ρ X , Y E [ R X , Y ] = ρ X , Y ?RX,YRX,YR_{X,Y}ρX,YρX,Y\rho_{X,Y}E[RX,Y]=ρX,Y?E[RX,Y]=ρX,Y?\mathbf{E}\left[R_{X,Y}\right]=\rho_{X,Y}? 그렇지 않다면, 대한 편견 추정기는 무엇 입니까? (어쩌면 사용되는 표준 편견 추정기가 있을까요? 또한 편향된 표본 분산에 ?nρX,YρX,Y\rho_{X,Y}nn−1nn−1\frac{n}{n-1} 모집단 상관 계수는 샘플 상관 계수는ρX,Y=E[(X−μX)(Y−μY)]E[(X−μX)2]−−−−−−−−−−−−√E[(Y−μY)2]−−−−−−−−−−−−√,ρX,Y=E[(X−μX)(Y−μY)]E[(X−μX)2]E[(Y−μY)2],\rho_{X,Y}=\frac{\mathbf{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sqrt{\mathbf{E}\left[\left(X-\mu_{X}\right)^{2}\right]}\sqrt{\mathbf{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]}},RX,Y=∑ni=1(Xi−X¯)(Yi−Y¯)∑ni=1(Xi−X¯)2−−−−−−−−−−−−−√∑ni=1(Yi−Y¯)2−−−−−−−−−−−−√.RX,Y=∑i=1n(Xi−X¯)(Yi−Y¯)∑i=1n(Xi−X¯)2∑i=1n(Yi−Y¯)2.R_{X,Y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}.