11
Markov Chain Monte Carlo (MCMC)를 평신도에게 어떻게 설명 하시겠습니까?
개념, 사용 이유 및 예일 수 있습니다.
Markov Chain Monte Carlo (MCMC)는 정지 분포가 목표 분포 인 Markov Chain에서 난수를 생성하여 목표 분포에서 샘플을 생성하는 방법 클래스를 말합니다. MCMC 방법은 일반적으로 난수 생성을위한보다 직접적인 방법 (예 : 반전 방법)을 사용할 수 없을 때 사용됩니다. 첫 번째 MCMC 방법은 Metropolis 알고리즘으로 나중에 Metropolis-Hastings 알고리즘으로 수정되었습니다.