«conv-neural-network» 태그된 질문

컨볼 루션 신경망 (Convolutional Neural Networks)은 겹치는 영역을 만들기 위해 레이어 간 가능한 연결의 하위 집합 만 존재하는 신경망 유형입니다. 시각적 작업에 일반적으로 사용됩니다.

5
머신 러닝에서 계층 적 / 중첩 된 데이터를 처리하는 방법
예를 들어 내 문제를 설명하겠습니다. {나이, 성별, 국가, 지역, 도시}와 같은 속성이 주어진 개인의 소득을 예측한다고 가정합니다. 당신은 이와 같은 훈련 데이터 세트를 가지고 있습니다 train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID Age …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
자유도는 정수가 아닌 숫자 일 수 있습니까?
GAM을 사용할 때 잔여 DF는 (코드의 마지막 줄). 그게 무슨 뜻이야? GAM 예제를 넘어 서면 일반적으로 자유도는 정수가 아닌 숫자 일 수 있습니까?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 1.2445 6.0516 (Dispersion Parameter …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

4
유효성 검사 정확도가 향상되는 동안 유효성 검사 손실이 증가하는 방법은 무엇입니까?
CIFAR10 데이터 세트에서 간단한 신경망을 훈련하고 있습니다. 얼마 후, 검증 손실이 증가하기 시작했지만 검증 정확도도 증가했습니다. 테스트 손실 및 테스트 정확도는 계속 향상됩니다. 이것이 어떻게 가능한지? 유효성 검증 손실이 증가하면 정확도가 저하되는 것 같습니다. 추신 : 비슷한 질문이 몇 개 있지만 아무도 그 일에 대해 설명하지 못했습니다.


8
머신 러닝에 대한 원리적이고 수학적인 이론을 갖는 것이 왜 그렇게 중요한가?
궁금한 점이 있는데, 이론적 / 이론적 기계 학습을하는 것이 왜 그렇게 중요한가? 인간으로서 개인적 관점에서, 나는 왜 머신 러닝이 중요한지를 이해할 수 있습니다. 인간은 자신이하는 일을 이해하는 것을 좋아합니다. 이론의 관점에서 수학은 재미있다 사물의 디자인을 안내하는 원칙이있을 경우 무작위 추측, 이상한 시행 착오에 소요되는 시간이 줄어 듭니다. 우리가 신경망이 실제로 …

2
Krizhevsky의 '12 CNN은 첫 번째 계층에서 253,440 개의 뉴런을 어떻게 얻습니까?
에서 알렉스 Krizhevsky, 등. 심층 컨볼 루션 신경망을 사용한 이미지 넷 분류 는 각 계층의 뉴런 수를 열거합니다 (아래 다이어그램 참조). 네트워크의 입력은 150,528 차원이며 네트워크의 나머지 계층에있는 뉴런의 수는 253,440–186,624–64,896–64,896–43,264–4096–4096–1000으로 제공됩니다. 3D 뷰 첫 번째 이후의 모든 층에 대한 뉴런의 수는 분명합니다. 뉴런을 계산하는 간단한 방법 중 하나는 해당 …

2
필터 매트릭스의 요소를 초기화하는 방법은 무엇입니까?
라이브러리 (Convnet 또는 TensorFlow와 같은)에 의존하지 않는 Python 코드를 작성하여 회선 신경 네트워크를 더 잘 이해하려고 노력하고 있으며 커널 매트릭스의 값을 선택하는 방법에 대한 문헌에 갇혀 있습니다. 이미지에서 컨볼 루션을 수행합니다. 아래 그림의 CNN 계층을 보여주는 기능 맵 사이의 단계에서 구현 세부 사항을 이해하려고합니다 . 이 다이어그램에 따르면 : 커널 …

1
TensorBoard에서 TensorFlow가 제공 한 히스토그램을 어떻게 해석합니까?
나는 최근에 텐서 흐름을 실행하고 배우고 있었고 해석하는 방법을 모르는 몇 가지 히스토그램을 얻었습니다. 보통 막대의 높이를 주파수 (또는 상대 주파수 / 카운트)로 생각합니다. 그러나 일반적인 히스토그램에서와 같이 막대가 없으며 사물이 음영 처리된다는 사실이 혼란스러워합니다. 한 번에 많은 선 / 높이가있는 것 같습니까? 다음 그래프를 해석하는 방법을 아는 사람이 있습니까 …

1
ResNet 건너 뛰기 연결을 통한 그라디언트 역 전파
ResNet 모듈 / 건너 뛰기 연결을 사용하여 그라디언트가 신경망을 통해 어떻게 전파되는지 궁금합니다. ResNet에 대한 몇 가지 질문을 보았습니다 (예 : 스킵 레이어 연결을 가진 신경망 ). 이것은 훈련 중 그라디언트의 역 전파에 대해 특별히 묻습니다. 기본 아키텍처는 다음과 같습니다. 필자는이 논문 인 이미지 인식을위한 잔차 네트워크 연구 (Research of …

3
숨겨진 레이어 뉴런으로서 Relu vs Sigmoid vs Softmax
Tensorflow에 의해 숨겨진 레이어가 하나 인 간단한 신경망을 가지고 놀고 있었고 숨겨진 레이어에 대해 다른 활성화를 시도했습니다. 렐루 시그 모이 드 Softmax (일반적으로 softmax는 마지막 레이어에서 사용됩니다.) Relu는 최고의 열차 정확도 및 검증 정확도를 제공합니다. 이것을 설명하는 방법을 잘 모르겠습니다. 우리는 Relu가 그라디언트 사라짐과 같은 희소성과 같은 좋은 특성을 가지고 …


4
딥 러닝 모델에 대해 softmax 출력이 불확실성 측정이 아닌 이유는 무엇입니까?
나는 현재 시맨틱 세그먼테이션 / 인스턴스 세그먼테이션을위한 이미지 데이터에 대해 컨볼 루션 신경망 (Convolutional Neural Networks, CNN)과 함께 일 해왔다. 필자는 종종 네트워크 출력의 소프트 맥스를 "히트 맵"으로 시각화하여 특정 클래스의 픽셀 당 활성화가 얼마나 높은지를 확인했습니다. 나는 낮은 활성화를 "불확실한"/ "자신감없는"것으로 해석하고 높은 활성화를 "확실한"/ "자신감있는"예측으로 해석했습니다. 기본적으로 이것은 …


2
병목 현상 아키텍처는 신경망에서 어떻게 작동합니까?
[2 개의 3x3 전환 레이어]가 [하나의 1x1 전환, 하나의 3x3 전환 및 다른 1x1 전환 레이어]로 대체되는 ResNet 논문에서 발견되는 유형으로 병목 현상 아키텍처를 정의합니다 . 1x1 전환 레이어는 치수 축소 (및 복원)의 형태로 사용되며 다른 게시물 에서 설명 합니다. 그러나 왜이 구조가 원래 레이아웃만큼 효과적인지 확실하지 않습니다. 몇 가지 …

2
배치 정규화는 이동 평균을 사용하여 훈련 할 때 모델의 정확도를 추적하는 방법과 이유는 무엇입니까?
배치 정규화 (BN) 용지를 읽고 있었으며 (1) 모형의 정확성을 추적하기 위해 이동 평균을 사용해야하는 필요성을 이해하지 못했으며, 그것이 옳은 일임을 인정하더라도 이해가되지 않습니다. 그들이 정확히하고있는 일. 내 이해 (내 잘못)를 위해, 논문은 모델이 훈련을 마치면 미니 배치 통계보다는 인구 통계를 사용한다고 언급합니다. 편견없는 추정치에 대한 논의를 마치면 (나에게 중요한 것처럼 …

당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.