1
Anova ()와 drop1 ()이 GLMM에 다른 답변을 제공 한 이유는 무엇입니까?
GLMM 형식이 있습니다. lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) 를 사용할 때 자동차 패키지 또는에서 사용할 때 drop1(model, test="Chi")와 다른 결과를 얻습니다 . 후자의 두 사람도 같은 대답을합니다.Anova(model, type="III")summary(model) 조작 된 데이터를 사용 하여이 두 가지 방법이 일반적으로 다르지 않다는 것을 알았습니다. …
10
r
anova
glmm
r
mixed-model
bootstrap
sample-size
cross-validation
roc
auc
sampling
stratification
random-allocation
logistic
stata
interpretation
proportion
r
regression
multiple-regression
linear-model
lm
r
cross-validation
cart
rpart
logistic
generalized-linear-model
econometrics
experiment-design
causality
instrumental-variables
random-allocation
predictive-models
data-mining
estimation
contingency-tables
epidemiology
standard-deviation
mean
ancova
psychology
statistical-significance
cross-validation
synthetic-data
poisson-distribution
negative-binomial
bioinformatics
sequence-analysis
distributions
binomial
classification
k-means
distance
unsupervised-learning
euclidean
correlation
chi-squared
spearman-rho
forecasting
excel
exponential-smoothing
binomial
sample-size
r
change-point
wilcoxon-signed-rank
ranks
clustering
matlab
covariance
covariance-matrix
normal-distribution
simulation
random-generation
bivariate
standardization
confounding
z-statistic
forecasting
arima
minitab
poisson-distribution
negative-binomial
poisson-regression
overdispersion
probability
self-study
markov-process
estimation
maximum-likelihood
classification
pca
group-differences
chi-squared
survival
missing-data
contingency-tables
anova
proportion