«fuzzy» 태그된 질문


5
매우 많은 수의 데이터 포인트에서 값을 대치하는 방법은 무엇입니까?
데이터 세트가 매우 커서 약 5 %의 임의 값이 없습니다. 이 변수들은 서로 상관되어 있습니다. 다음 예제 R 데이터 세트는 더미 상관 데이터가있는 장난감 예제 일뿐입니다. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, sep ="") rownames(xmat) …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

2
퍼지 로직은 어떻게 되었습니까?
퍼지 로직 은 내가 대학원에있을 때 (2000 년대 초) 기계 학습 및 데이터 마이닝 분야에서 활발한 연구 분야처럼 보였다. 퍼지 추론 시스템, 퍼지 c- 평균, 다양한 신경망의 퍼지 버전 및 지원 벡터 머신 아키텍처는 모두 대학원 과정에서 강의되었으며 회의에서 논의되었습니다. ML에 다시 관심을 갖기 시작한 이후 (~ 2013 년) 퍼지 …

1
확률 논리와 퍼지 논리의 차이점은 무엇입니까?
저는 수년간 퍼지 로직 (FL)을 사용해 왔으며 FL이 불확실성을 처리하는 방식과 관련하여 FL과 확률 사이에 차이가 있음을 알고 있습니다. 그러나 FL과 확률 사이에 어떤 차이가 더 있는지 묻고 싶습니다. 다시 말해, 확률 (정보 융합, 지식 집계)을 다루는 경우 FL과 동일한 작업을 수행 할 수 있습니까?
10 bayes  fuzzy 
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.