Halmos-Savage 정리에 대한 직관적 이해
Halmos에-야만인 정리 라고하는 지배적 통계 모델 통계 모든 에 대해 측정 가능 버전의 Radon Nikodym 유도체 가있는 경우 이면 충분합니다. 여기서 는 대해 및 와 같은 특권 측정 .(Ω,A,P)(Ω,A,P)(\Omega, \mathscr A, \mathscr P)T:(Ω,A,P)→(Ω′,A′)T:(Ω,A,P)→(Ω′,A′)T: (\Omega, \mathscr A, \mathscr P)\to(\Omega', \mathscr A'){P∈P}{P∈P}\{P \in \mathscr{P} \} TTTdPdP∗dPdP∗\frac{dP}{dP*}dP∗dP∗dP*P∗=∑∞i=1PiciP∗=∑i=1∞PiciP*=\sum_{i=1}^\infty P_i c_i ci>0,∑∞i=1ci=1ci>0,∑i=1∞ci=1c_i >0, \sum _{i=1}^\infty …