분배 기능
각각 4 개의 독립적으로 균일하게 분포 된 변수 있습니다. 의 분포를 계산하고 . I는 분포 계산 할 (따라서 ), 그리고 는 이제 합계 의 분포 는 ( 입니다. 독립) 때문에a,b,c,da,b,c,da,b,c,d[0,1][0,1][0,1](a−d)2+4bc(a−d)2+4bc(a-d)^2+4bcu2=4bcu2=4bcu_2=4bcf2(u2)=−14lnu24f2(u2)=−14lnu24f_2(u_2)=-\frac{1}{4}\ln\frac{u_2}{4}u2∈(0,4]u2∈(0,4]u_2\in(0,4]u1=(a−d)2u1=(a−d)2u_1=(a-d)^2f1(u1)=1−u1−−√u1−−√.f1(u1)=1−u1u1.f_1(u_1)=\frac{1-\sqrt{u_1}}{\sqrt{u_1}}.u1+u2u1+u2u_1+u_2u1,u2u1,u2u_1,\, u_2fu1+u2(x)=∫+∞−∞f1(x−y)f2(y)dy=−14∫401−x−y−−−−√x−y−−−−√⋅lny4dy,fu1+u2(x)=∫−∞+∞f1(x−y)f2(y)dy=−14∫041−x−yx−y⋅lny4dy,f_{u_1+u_2}(x)=\int_{-\infty}^{+\infty}f_1(x-y)f_2(y)dy=-\frac{1}{4}\int_0^4\frac{1-\sqrt{x-y}}{\sqrt{x-y}}\cdot\ln\frac{y}{4}dy,와이∈ ( 0 , 4 ]와이∈(0,4]y\in(0,4]. 여기서 적분은 f_ {u_1 + u_2} (x) =-\ frac {1} {4} \ int_0 ^ …