«poisson-distribution» 태그된 질문

평균이 분산과 같은 특성을 갖는 음이 아닌 정수에 정의 된 불연속 분포입니다.

1
관찰 된 이벤트와 예상 된 이벤트를 비교하는 방법은 무엇입니까?
4 가지 가능한 이벤트의 주파수 샘플이 하나 있다고 가정합니다. Event1 - 5 E2 - 1 E3 - 0 E4 - 12 내 이벤트의 예상 확률이 있습니다. p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 내 네 가지 사건의 관측 빈도의 합으로 (18) 사건의 예상 빈도를 올바르게 …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

2
임의의 기울기와 절편으로 Poisson GLM 혼합 모델 피팅
현재 일련의 Poisson 시계열 모델을 연구하고 있으며 시간이 지남에 따라 다른 추세를 제어하면서 (수의 진단 테스트에서 다른 진단 테스트로 전환) 카운트 획득 방식 변경의 영향을 추정하려고합니다. 질병의 발생률). 여러 사이트에 대한 데이터가 있습니다. GAM을 다루는 동안 시간 추세가있는 일련의 매우 기본적인 GLM을 맞추고 결과를 모았습니다. 이 코드는 SAS에서 다음과 같이 …

1
포아송 / 로그 선형 모형의 우도 비 검정을 위해 제로 카운트를 조정해야합니까?
우연성 표에 0이 glm있고 우도 비율 검정에 중첩 포아송 / 로그 선형 모형 (R의 함수 사용)을 피팅하는 경우 glm 모형을 피팅하기 전에 데이터를 조정해야합니다 (예 : 모두에 1/2 추가) 카운트)? 조정 없이는 일부 파라미터를 추정 할 수 없지만 조정 / 조정 부족이 LR 테스트에 어떤 영향을 줍니까?

2
데이터에 대한 ROC 곡선 계산
그래서, 나는 16 개의 시험을 가지고 있는데, 여기에서 Hamming Distance를 사용하여 생체 특성으로부터 사람을 인증하려고합니다. 임계 값이 3.5로 설정되었습니다. 내 데이터는 다음과 같으며 1 번 시험 만 참 긍정입니다. Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 0.32 9 0.39 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.