1
R / mgcv : te () 및 ti () 텐서 제품이 다른 표면을 생성하는 이유는 무엇입니까?
mgcv에 대한 패키지는 R텐서 제품의 상호 작용을 피팅에 대한 두 가지 기능이 있습니다 : te()와 ti(). 나는 둘 사이의 기본 노동 분열을 이해한다 (비선형 상호 작용에 적합하고이 상호 작용을 주요 효과와 상호 작용으로 분해). 내가 이해할 수없는 것은 왜 te(x1, x2)와 ti(x1) + ti(x2) + ti(x1, x2)(약간) 다른 결과가 발생할 …
11
r
gam
mgcv
conditional-probability
mixed-model
references
bayesian
estimation
conditional-probability
machine-learning
optimization
gradient-descent
r
hypothesis-testing
wilcoxon-mann-whitney
time-series
bayesian
inference
change-point
time-series
anova
repeated-measures
statistical-significance
bayesian
contingency-tables
regression
prediction
quantiles
classification
auc
k-means
scikit-learn
regression
spatial
circular-statistics
t-test
effect-size
cohens-d
r
cross-validation
feature-selection
caret
machine-learning
modeling
python
optimization
frequentist
correlation
sample-size
normalization
group-differences
heteroscedasticity
independence
generalized-least-squares
lme4-nlme
references
mcmc
metropolis-hastings
optimization
r
logistic
feature-selection
separation
clustering
k-means
normal-distribution
gaussian-mixture
kullback-leibler
java
spark-mllib
data-visualization
categorical-data
barplot
hypothesis-testing
statistical-significance
chi-squared
type-i-and-ii-errors
pca
scikit-learn
conditional-expectation
statistical-significance
meta-analysis
intuition
r
time-series
multivariate-analysis
garch
machine-learning
classification
data-mining
missing-data
cart
regression
cross-validation
matrix-decomposition
categorical-data
repeated-measures
chi-squared
assumptions
contingency-tables
prediction
binary-data
trend
test-for-trend
matrix-inverse
anova
categorical-data
regression-coefficients
standard-error
r
distributions
exponential
interarrival-time
copula
log-likelihood
time-series
forecasting
prediction-interval
mean
standard-error
meta-analysis
meta-regression
network-meta-analysis
systematic-review
normal-distribution
multiple-regression
generalized-linear-model
poisson-distribution
poisson-regression
r
sas
cohens-kappa