칼만 필터의 가능성이 더 부드러운 결과 대신 필터 결과를 사용하여 계산되는 이유는 무엇입니까?
나는 칼만 필터를 매우 표준적인 방법으로 사용하고 있습니다. 시스템은 상태 방정식 및 관측 방정식 됩니다.xt+1=Fxt+vt+1xt+1=Fxt+vt+1x_{t+1}=Fx_{t}+v_{t+1}yt=Hxt+Azt+wtyt=Hxt+Azt+wty_{t}=Hx_{t}+Az_{t}+w_{t} 교과서는 Kalman 필터를 적용하고 "일단 예측" (또는 "필터링 된 추정치")을 얻은 후에이를 사용하여 우도 함수를 계산해야한다고 가르칩니다 .x^t|t−1x^t|t−1\hat{x}_{t|t-1} fyt|It−1,zt(yt|It−1,zt)=det[2π(HPt|t−1H′+R)]−12exp{−12(yt−Hx^t|t−1−Azt)′(HPt|t−1H′+R)−1(yt−Hx^t|t−1−Azt)}fyt|It−1,zt(yt|It−1,zt)=det[2π(HPt|t−1H′+R)]−12exp{−12(yt−Hx^t|t−1−Azt)′(HPt|t−1H′+R)−1(yt−Hx^t|t−1−Azt)}f_{y_{t}|\mathcal{I}_{t-1},z_{t}}\left(y_{t}|\mathcal{I}_{t-1},z_{t}\right)=\det\left[2\pi\left(HP_{t|t-1}H^{\prime}+R\right)\right]^{-\frac{1}{2}}\exp\left\{ -\frac{1}{2}\left(y_{t}-H\hat{x}_{t|t-1}-Az_{t}\right)^{\prime}\left(HP_{t|t-1}H^{\prime}+R\right)^{-1}\left(y_{t}-H\hat{x}_{t|t-1}-Az_{t}\right)\right\} 내 질문은 다음과 같습니다. 왜 우도 함수 는 "평활 추정" \ hat {x} _ {t …