«ranks» 태그된 질문


4
반복 횟수가 증가함에 따라 그라디언트 부스팅 기계 정확도가 감소합니다.
caretR 의 패키지를 통해 그라디언트 부스팅 머신 알고리즘을 실험하고 있습니다 . 소규모 대학 입학 데이터 세트를 사용하여 다음 코드를 실행했습니다. library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine algorithm. ### set.seed(123) fitControl …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

2
중앙값이 같을 때 Mann-Whitney U 검정이 중요한 이유는 무엇입니까?
이해할 수없는 Mann-Whitney 등급 테스트 결과를 받았습니다. 두 모집단의 중앙값은 동일합니다 (6.9). 각 모집단의 uppper와 lower Quantile은 다음과 같습니다. 6.64 및 7.2 6.60 및 7.1 이 모집단을 비교 한 검정의 결과 p- 값은 0.007입니다. 이 인구는 어떻게 크게 다를 수 있습니까? 중앙값이 확산 되었기 때문입니까? 2를 비교하는 상자 그림은 두 …

1
캐럿 glmnet vs cv.glmnet
glmnetwithin caret을 사용하여 최적의 람다를 검색 cv.glmnet하고 동일한 작업을 수행하는 것을 비교하는 데 많은 혼란이있는 것 같습니다 . 다음과 같은 많은 질문이 제기되었습니다. 분류 모델 train.glmnet 대 cv.glmnet? 캐럿과 함께 glmnet을 사용하는 올바른 방법은 무엇입니까? `caret`를 사용한 교차 유효성 검사`glmnet` 그러나 질문의 ​​재현 가능성으로 인한 답변이 없습니다. 첫 번째 질문에 …

5
매우 많은 수의 데이터 포인트에서 값을 대치하는 방법은 무엇입니까?
데이터 세트가 매우 커서 약 5 %의 임의 값이 없습니다. 이 변수들은 서로 상관되어 있습니다. 다음 예제 R 데이터 세트는 더미 상관 데이터가있는 장난감 예제 일뿐입니다. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, sep ="") rownames(xmat) …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

1
서수 데이터 표시-평균, 중간 및 평균 순위
정규 분포가 아닌 서수 데이터가 있으므로 Mann-Whitney U 테스트를 사용하여 비모수 테스트를 수행하기로 결정했습니다. 7 개의 점수에 대한 그룹 간 차이를보고 있습니다.이 점수는 각 과목에 대해 0, 1, 2 또는 3입니다. 데이터를 표시하는 방법을 알아내는 데 어려움을 겪고 있습니다! 중앙값 (및 중앙값의 IQR)을 사용하여 데이터를 표시 할 경우 대부분의 중앙값이 …

1
Anova ()와 drop1 ()이 GLMM에 다른 답변을 제공 한 이유는 무엇입니까?
GLMM 형식이 있습니다. lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) 를 사용할 때 자동차 패키지 또는에서 사용할 때 drop1(model, test="Chi")와 다른 결과를 얻습니다 . 후자의 두 사람도 같은 대답을합니다.Anova(model, type="III")summary(model) 조작 된 데이터를 사용 하여이 두 가지 방법이 일반적으로 다르지 않다는 것을 알았습니다. …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

2
정규성 가정에도 불구하고 등급의 Pearson 상관 관계가 유효한 이유는 무엇입니까?
현재 Pearson 상관 관계에 대한 가정을 읽고 있습니다. 이어지는 t- 검정에 대한 중요한 가정은 두 변수가 정규 분포에서 나온 것 같습니다. 그렇지 않은 경우 Spearman Rho와 같은 대체 수단을 사용하는 것이 좋습니다. Spearman 상관 관계는 Pearson 상관 관계처럼 계산되며 X 및 Y 대신 X 및 Y 순위 만 사용합니다. 맞습니까? …
당사 사이트를 사용함과 동시에 당사의 쿠키 정책개인정보 보호정책을 읽고 이해하였음을 인정하는 것으로 간주합니다.
Licensed under cc by-sa 3.0 with attribution required.