가 독립 변수 인 경우 분포
일상적인 연습으로, 의 분포를 찾으려고합니다. 여기서 와 는 독립적 인 임의 변수입니다.X2+Y2−−−−−−−√X2+Y2\sqrt{X^2+Y^2}XXXYYYU(0,1)U(0,1) U(0,1) 의 접합 밀도 는 (X,Y)(X,Y)(X,Y)fX,Y(x,y)=10<x,y<1fX,Y(x,y)=10<x,y<1f_{X,Y}(x,y)=\mathbf 1_{0\cos^{-1}\left(\frac{1}{z}\right)cosθcosθ\cos\thetaθ∈[0,π2]θ∈[0,π2]\theta\in\left[0,\frac{\pi}{2}\right]zsinθ<1⟹θ<sin−1(1z)zsinθ<1⟹θ<sin−1(1z)z\sin\theta<1\implies\theta<\sin^{-1}\left(\frac{1}{z}\right)sinθsinθ\sin\thetaθ∈[0,π2]θ∈[0,π2]\theta\in\left[0,\frac{\pi}{2}\right] 따라서 경우 .1<z<2–√1<z<21< z<\sqrt 2cos−1(1z)<θ<sin−1(1z)cos−1(1z)<θ<sin−1(1z)\cos^{-1}\left(\frac{1}{z}\right)<\theta<\sin^{-1}\left(\frac{1}{z}\right) 변환의 자코비 안의 절대 값은|J|=z|J|=z|J|=z 따라서 공동 밀도 주어진다(Z,Θ)(Z,Θ)(Z,\Theta) fZ,Θ(z,θ)=z1{z∈(0,1),θ∈(0,π/2)}⋃{z∈(1,2√),θ∈(cos−1(1/z),sin−1(1/z))}fZ,Θ(z,θ)=z1{z∈(0,1),θ∈(0,π/2)}⋃{z∈(1,2),θ∈(cos−1(1/z),sin−1(1/z))}f_{Z,\Theta}(z,\theta)=z\mathbf 1_{\{z\in(0,1),\,\theta\in\left(0,\pi/2\right)\}\bigcup\{z\in(1,\sqrt2),\,\theta\in\left(\cos^{-1}\left(1/z\right),\sin^{-1}\left(1/z\right)\right)\}} 통합하면 과 같이 의 pdf를 얻습니다.θθ\thetaZZZ fZ(z)=πz210<z<1+(πz2−2zcos−1(1z))11<z<2√fZ(z)=πz210<z<1+(πz2−2zcos−1(1z))11<z<2f_Z(z)=\frac{\pi z}{2}\mathbf 1_{0\sqrt 2 \end{cases} 올바른 표현처럼 보입니다. 사례 …