두 개의 샘플 카이 제곱 테스트
이 질문은 Van der Vaart의 저서 Asymptotic Statistics, pg에서 발췌 한 것입니다. 253. # 3 : 및 이 매개 변수 및 갖는 독립 다항식 벡터 라고 가정합니다 . 귀무 가설에서 는XmXm\mathbf{X}_mYnYn\mathbf{Y}_n(m,a1,…,ak)(m,a1,…,ak)(m,a_1,\ldots,a_k)(n,b1,…,bk)(n,b1,…,bk)(n,b_1,\ldots,b_k)ai=biai=bia_i=b_i ∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i\sum_{i=1}^k \dfrac{(X_{m,i} - m\hat{c}_i)^2}{m\hat{c}_i} + \sum_{i=1}^k \dfrac{(Y_{n,i} - n\hat{c}_i)^2}{n\hat{c}_i} 에는 분포가 있습니다. 여기서 입니다.χ2k−1χk−12\chi^2_{k-1}c^i=(Xm,i+Yn,i)/(m+n)c^i=(Xm,i+Yn,i)/(m+n)\hat{c}_i = (X_{m,i} + Y_{n,i})/(m+n) 시작하는 …